Running AGL as VMs

This document describes how to run two Automotive Grade Linux (AGL) images as VMs on the ACRN hypervisor. This serves as the baseline for developing the hypervisor version of the AGL CES demo using open-source technologies.

../_images/agl-demo-concept.jpg

Figure 215 Demo concept

Figure 215 shows the AGL demo system configuration. The hardware is an Intel Kaby Lake NUC and three displays for the cluster meter, the In-Vehicle Infotainment (IVI) system, and the rear seat entertainment (RSE). For the software, there are three VMs running on top of ACRN:

  • Clear Linux OS runs as the service OS (SOS) to control the cluster meter,
  • an AGL instance runs as a user OS (UOS) controlling the IVI display, and
  • a second AGL UOS controls the RSE display.

Figure 216 shows the hardware and display images of a running demo:

../_images/agl-demo-setup.jpg

Figure 216 Demo in action

Hardware setup

Here is the hardware used for the demo development:

Table 12 Demo Hardware
Name Link Notes
NUC Kaby Lake NUC7i7DNHE
eDP display Sharp LQ125T1JX05  
eDP cable eDP 40 pin cable Other eDP pin cables work as well
HDMI touch displays GeChic 1303I  
Serial cable Serial DB9 header cable or RS232 lid  

Connecting hardware

Learn how to connect an eDP display to the NUC using an eDP cable as shown in Figure 217, by following the NUC specification

../_images/agl-cables.jpg

Figure 217 USB an Display cable connections

As shown in Figure 217, connect HDMI cables and USB cables (for touch) to the touch displays for the IVI and RSE. (If the USB port for touch is changed, the USB bus-port number in the AGL launch script must be changed accordingly.)

Software Setup

The demo setup uses these software components and versions:

Table 13 Demo Software
Name Version Link
ACRN hypervisor 0.3 ACRN project
Clear Linux OS 26200 Clear Linux OS installer image
AGL Funky Flounder (6.02) intel-corei7-x64 image
acrn-kernel revision acrn-2018w49.3-140000p acrn-kernel

Service OS

  1. Download the compressed Clear Linux OS installer image from https://download.clearlinux.org/releases/26200/clear/clear-26200-installer.img.xz and follow the Clear Linux OS installation guide as a starting point for installing Clear Linux OS onto your platform. Follow the recommended options for choosing an Automatic installation type, and using the platform’s storage as the target device for installation (overwriting the existing data and creating three partitions on the platform’s storage drive).

  2. After installation is complete, boot into Clear Linux OS, login as root, and set a password.

  3. Clear Linux OS is set to automatically update itself. We recommend that you disable this feature to have more control over when the updates happen. Use this command (as root) to disable the autoupdate feature:

    # swupd autoupdate --disable
    
  4. This demo setup uses a specific release version (26200) of Clear Linux OS which has been verified to work with ACRN. In case you unintentionally update or change the Clear Linux OS version, you can fix it again using:

    # swupd verify --fix --picky -m 26200
    
  5. Use the swupd bundle-add command and add needed Clear Linux OS bundles:

    # swupd bundle-add openssh-server sudo network-basic \
        kernel-iot-lts2018 os-clr-on-clr os-core-dev \
        python3-basic dfu-util dtc
    
  6. Install the graphics UI if necessary. Use only one of the two options listed below (this guide uses the first GNOME on Wayland option):

    # swupd bundle-add desktop desktop-autostart # GNOME and Weston
    

    or:

    # swupd bundle-add software-defined-cockpit # IAS shell for IVI (optional)
    
  7. Create a new user and allow the user to use “sudo”:

    # useradd <username>
    # passwd <username>
    # usermod -G wheel -a <username>
    
  8. Reboot the system:

    # reboot
    
  9. The system will reboot to the graphic interface (GDM). In the login screen, click on the setting button and choose “GNOME on Wayland”. Then chose the <username> and enter the password to login.

  10. Build ACRN. In this demo we use the ACRN v0.3 release. Open a terminal window in Clear Linux OS desktop, create a workspace, install needed tools, clone the ACRN Hypervisor repo source, and build ACRN:

    $ mkdir workspace
    $ cd workspace
    $ pip3 install kconfiglib
    $ git clone https://github.com/projectacrn/acrn-hypervisor
    $ git checkout tags/v0.3
    $ make PLATFORM=uefi
    $ sudo make install
    
  11. Install and enable ACRN:

    $ sudo mount /dev/sda1 /mnt
    $ sudo mkdir /mnt/EFI/acrn
    $ sudo cp /usr/lib/acrn/acrn.efi /mnt/EFI/acrn/
    $ efibootmgr -c -l "\EFI\acrn\acrn.efi" -d /dev/sda -p 1 \
        -L "ACRN Hypervisor" \
        -u "bootloader=\EFI\org.clearlinux\bootloaderx64.efi uart=port@0x3f8"
    
    $ sudo cp /usr/share/acrn/samples/nuc/acrn.conf /mnt/loader/entries/
    $ sudo vi /mnt/loader/entries/acrn.conf
    

    Modify the acrn.conf file as shown below and save it:

    title The ACRN Service OS
    
    linux
    /EFI/org.clearlinux/kernel-org.clearlinux.iot-lts2018-sos.4.19.0-19
    
    options pci_devices_ignore=(0:18:1) console=tty0 console=ttyS0
    root=/dev/sda3 rw rootwait ignore_loglevel no_timer_check consoleblank=0
    i915.nuclear_pageflip=1 i915.avail_planes_per_pipe=0x00000F i915.domain_plane_owners=0x022211110000
    i915.enable_gvt=1 i915.enable_guc=0 hvlog=2M@0x1FE00000
    
  12. Set a longer timeout:

    $ sudo clr-boot-manager set-timeout 20
    $ sudo clr-boot-manager update
    
  13. Reboot the system, choose “ACRN Hypervisor” and launch Clear Linux OS SOS. If the EFI boot order is not right, use F10 on boot up to enter the EFI menu and choose “ACRN Hypervisor”.

Building ACRN kernel for AGL (UOS)

In this demo, we use acrn-kernel as the baseline for development for AGL.

  1. Create a workspace, get the kernel source code, and configure kernel settings with:

    $ cd workspace
    $ git clone https://github.com/projectacrn/acrn-kernel
    $ git checkout tags/acrn-2018w49.3-140000p
    $ make menuconfig
    

    Load the kernel_uos_config for the UOS kernel build, and verify the following configs options are on:

    CONFIG_LOCAL_VERSION="-uos"
    CONFIG_SECURITY_SMACK=y
    CONFIG_SECURITY_SMACK_BRINGUP=y
    CONFIG_DEFAULT_SECURITY_SMACK=y
    CONFIG_EXT4_FS=y
    CONFIG_EXT4_USE_FOR_EXT23=y
    CONFIG_EXT4_FS_POSIX_ACL=y
    CONFIG_EXT4_FS_SECURITY=y
    # CONFIG_MODULES is not set
    CONFIG_CAN
    CONFIG_CAN_VCAN
    CONFIG_CAN_SLCAN
    
  2. Build the kernel:

    $ make -j 4
    $ sudo make modules_install
    $ sudo cp arch/x86/boot/bzImage /root/bzImage-4.19.0-uos
    

Setting up AGLs

  1. Download the AGL Funky Flounder image:

    $ sudo su
    # cd /root
    # wget https://download.automotivelinux.org/AGL/release/flounder/6.0.2/intel-corei7-64/deploy/images/intel-corei7-64/agl-demo-platform-crosssdk-intel-corei7-64-20181112133144.rootfs.wic.xz
    
    # unxz agl-demo-platform-crosssdk-intel-corei7-64-20181112133144.rootfs.wic.xz
    # cp agl-demo-platform-crosssdk-intel-corei7-64-20181112133144.rootfs.wic agl-ivi.wic
    # cp agl-demo-platform-crosssdk-intel-corei7-64-20181112133144.rootfs.wic agl-rse.wic
    
  2. Set up the AGL images:

    # losetup -f -P --show agl-ivi.wic
    # mount /dev/loop0p2 /mnt
    # cp -r /lib/modules/4.19.0-uos /mnt/lib/modules/
    # sync
    # umount /mnt
    # losetup -f -P --show agl-rse.wic
    # mount /dev/loop1p2 /mnt
    # cp -r /lib/modules/4.19.0-uos /mnt/lib/modules/
    # sync
    # umount /mnt
    
  3. Create the launch_ivi.sh script for the AGL IVI VM (e.g., with vi) with the following content:

    #!/bin/bash
    function launch_agl()
    {
      vm_name=vm$1
    
      #check if the vm is running or not
      vm_ps=$(pgrep -a -f acrn-dm)
      result=$(echo $vm_ps | grep "${vm_name}")
      if [[ "$result" != "" ]]; then
        echo "$vm_name is running, can't create twice!"
        exit
      fi
    
      # create a unique tap device for each VM
      tap=tap2
      tap_exist=$(ip a | grep "$tap" | awk '{print $1}')
      if [ "$tap_exist"x != "x" ]; then
        echo "tap device existed, reuse $tap"
      else
        ip tuntap add dev $tap mode tap
      fi
    
      # if acrn-br0 exists, add VM's unique tap device under it
      br_exist=$(ip a | grep acrn-br0 | awk '{print $1}')
      if [ "$br_exist"x != "x" -a "$tap_exist"x = "x" ]; then
        echo "acrn-br0 bridge aleady exists, adding new tap device to it..."
        ip link set "$tap" master acrn-br0
        ip link set dev "$tap" down
        ip link set dev "$tap" up
      fi
    
      #for memsize setting
      mem_size=2048M
    
      acrn-dm -A -m $mem_size -c $2 -s 0:0,hostbridge -s 1:0,lpc -l com1,stdio \
        -s 2,pci-gvt -G "$3" \
        -s 5,virtio-console,@pty:pty_port \
        -s 6,virtio-hyper_dmabuf \
        -s 3,virtio-blk,/root/agl_ivi.wic \
        -s 4,virtio-net,$tap \
        -s 7,xhci,1-4 \
        -k /root/bzImage-4.19.0-uos \
        -B "root=/dev/vda2 rw rootwait maxcpus=$2 nohpet console=tty0 console=hvc0 \
        console=ttyS0 no_timer_check ignore_loglevel log_buf_len=16M \
        consoleblank=0 tsc=reliable i915.avail_planes_per_pipe=$4 \
        i915.enable_hangcheck=0 i915.nuclear_pageflip=1 i915.enable_guc_loading=0 \
        i915.enable_guc_submission=0 i915.enable_guc=0" $vm_name
    }
    
    
    # offline SOS CPUs except BSP before launch UOS
    for i in `ls -d /sys/devices/system/cpu/cpu[2-99]`; do
      online=`cat $i/online`
      idx=`echo $i | tr -cd "[2-99]"`
      echo cpu$idx online=$online
      if [ "$online" = "1" ]; then
        echo 0 > $i/online
        echo $idx > /sys/class/vhm/acrn_vhm/offline_cpu
      fi
    done
    
    launch_agl 1 1 "64 448 8" 0x000F00 agl
    
  4. Create the launch_rse.sh script for the AGL RSE VM with this content:

    #!/bin/bash
    
    function launch_agl()
    {
      vm_name=vm$1
    
      #check if the vm is running or not
      vm_ps=$(pgrep -a -f acrn-dm)
      result=$(echo $vm_ps | grep "${vm_name}")
      if [[ "$result" != "" ]]; then
        echo "$vm_name is running, can't create twice!"
        exit
      fi
    
    
      # create a unique tap device for each VM
      tap=tap1
    
      tap_exist=$(ip a | grep "$tap" | awk '{print $1}')
      if [ "$tap_exist"x != "x" ]; then
        echo "tap device existed, reuse $tap"
      else
        ip tuntap add dev $tap mode tap
      fi
    
    
      # if acrn-br0 exists, add VM's unique tap device under it
    
      br_exist=$(ip a | grep acrn-br0 | awk '{print $1}')
      if [ "$br_exist"x != "x" -a "$tap_exist"x = "x" ]; then
        echo "acrn-br0 bridge aleady exists, adding new tap device to it..."
        ip link set "$tap" master acrn-br0
        ip link set dev "$tap" down
        ip link set dev "$tap" up
      fi
    
      #for memsize setting
      mem_size=2048M
    
    
      acrn-dm -A -m $mem_size -c $2 -s 0:0,hostbridge -s 1:0,lpc -l com1,stdio \
      -s 2,pci-gvt -G "$3" \
      -s 5,virtio-console,@pty:pty_port \
      -s 6,virtio-hyper_dmabuf \
      -s 3,virtio-blk,/root/agl_rse.wic \
      -s 4,virtio-net,tap1 \
      -s 7,xhci,1-5 \
      -k /root/bzImage-4.19.0-uos \
      -B "root=/dev/vda2 rw rootwait maxcpus=$2 nohpet console=tty0 console=hvc0 \
        console=ttyS0 no_timer_check ignore_loglevel log_buf_len=16M \
        consoleblank=0 tsc=reliable i915.avail_planes_per_pipe=$4 \
        i915.enable_hangcheck=0 i915.nuclear_pageflip=1 i915.enable_guc_loading=0 \
        i915.enable_guc_submission=0 i915.enable_guc=0" $vm_name
    }
    
    
    # offline SOS CPUs except BSP before launch UOS
    for i in `ls -d /sys/devices/system/cpu/cpu[2-99]`; do
      online=`cat $i/online`
      idx=`echo $i | tr -cd "[2-99]"`
      echo cpu$idx online=$online
      if [ "$online" = "1" ]; then
        echo 0 > $i/online
        echo $idx > /sys/class/vhm/acrn_vhm/offline_cpu
      fi
    done
    
    launch_agl 2 1 "64 448 8" 0x070000 agl
    
  5. Launch the AGL IVI VM:

    # chmod a+x launch_ivi.sh
    # ./launch_ivi.sh
    
  6. Settings for the IVI screen

    After booting, the IVI image will be accessible via the console. Login as root, and use an editor to modify /etc/xdg/weston/weston.ini to change the [output] orientation as shown below.

    [core]
    shell=ivi-shell.so
    backend=drm-backend.so
    require-input=false
    modules=systemd-notify.so
    
    # A display is connected to HDMI-A-1 and needs to be rotated 90 degrees
    # to have a proper orientation of the homescreen.  For example, the 'eGalax'
    # display used in some instances.
    
    [output]
    name=HDMI-A-1
    transform=270
    
    [id-agent]
    default-id-offset=1000
    
    [ivi-shell]
    ivi-input-module=ivi-input-controller.so
    ivi-module=ivi-controller.so
    id-agent-module=simple-id-agent.so
    
    [shell]
    locking=true
    panel-position=none
    

    Note

    Reboot for the changes to take affect.

  7. Launch the AGL RSE VM

    Open a new terminal:

    $ sudo su
    # cd /root
    # chmod a+x launch_rse.sh
    # ./launch_rse.sh
    
  8. Settings for the RSE screen

    After booting, the RSE image will be accessible via the console. Login as root, and use an editor to modify /etc/xdg/weston/weston.ini to change the [output] orientation as shown below.

    [core]
    shell=ivi-shell.so
    backend=drm-backend.so
    require-input=false
    modules=systemd-notify.so
    
    # A display is connected to HDMI-A-3 and needs to be rotated 90 degrees
    # to have a proper orientation of the homescreen.  For example, the 'eGalax'
    # display used in some instances.
    
    [output]
    name=HDMI-A-3
    transform=270
    
    [id-agent]
    default-id-offset=1000
    
    [ivi-shell]
    ivi-input-module=ivi-input-controller.so
    ivi-module=ivi-controller.so
    id-agent-module=simple-id-agent.so
    
    [shell]
    locking=true
    panel-position=none
    

    Note

    Reboot for the changes to take affect.

Congratulations! You’ve successfully launch the demo system. It should look similar to Figure 216 at the beginning of this document. AGL as IVI and RSE work independently on top of ACRN and you can interact with them via the touch screen.